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Abstract. We consider an irreversible quantum dynamical system that mimics the classical
phase doubling map — z2 on the unit circle and study its ergodic properties. The main result
of the paper is the computation of the dynamical entropy (log 2) using compact perturbations
of unity as operational partitions of unity.

1. Introduction

A standard example of an irreversible classical dynamical system is the map
6:[0,1[— [0,1]: x —» 2xmod 1

which leaves the Lebesgue measure invariant. Another version of this system is the phase
doubling mapz — z? with a Lebesgue measure on the unit circle. Yet another equivalent
formulation is the left-shift of the spin cha{®, 1} with the Bernoulli measure that assigns
a probability of %2 to both 0 and 1. In this paper, we will stay with the first picture.

The phase doubling map is chaotic, meaning that there exists a positive Lyapunov
exponentr, defined as

1
A= lim —log|D,(0"(x))| =log2
n—»oon
With quantization in mind, we can use the shift
T, :[0,1[— [0, 1[: x = x + xomod 1

to put the notion of the Lyapunov exponent in a form suitable for an algebraic description
by writing

00Ty = To,00. 2)

This expresses the simple fact that shifting a point over a distapand applying the
dynamics produces the same effect as first applying the dynamics and then shifting over
twice the original distance.

It is our aim in this paper to introduce an irreversible dynamion B(L£2([0, 1], dx))
which corresponds to the classical phase doubling and to study its entropy. We will consider
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for ® a non-invertible, unity preservingi-homomorphism and impose that it acts on the
multiplication operators in the same way as the classical dynamics

OMs) = My 2

M; being the multiplication operator ofit = L?([0,1],dx) by the function f ¢
L£°([0, 1], dx). Let us stress, that we considér as a dynamic on the whole d&(H),
not only as a map on the multiplication operators. This approach is quite different from
the approach taken in, for example, Baker [1], where a unitary evolution on a finite-
dimensional vector space is constructed to mimic the classical Baker transformation. There
is certainly not a unique homomorphism satisfying (2). Therefore, we impose some
additional conditions on the dynamics.

Consider the unitary operator

(Ux9)(x) = @(T_xX) peH

and the automorphism ~ t,,(A) 1= U,, AU it implements.z,, corresponds on the level
of the observables to a right-shift over a distangén position space. It is natural to ask
that for anyxg € [0, 1]

T, 00 =0 o1y 3)

since this relation, restricted to multiplication operators, yields (1) again. Following the
set-up of [2], expression (3) indicates the existence of a quantum Lyapunov exponent log 2.
One could say that the dynamics stretches the position observable by a factor @. As
conserves the commutation relation between position and momentum it is to be expected
that the momentum observable will shrink by a factor 2 under the dynamics. To see this, we
introduce the group of automorphisfi | k € Z} determined by the unitarie®,«, where

Yk (x) 1= exp(i2wkx). o describes on the level of the observables a shift in momentum
space. It follows then immediately from (2) that

o% 00O =0 o0 4

showing the presence of a second Lyapunov expondag 2.

In section 3, we deal with the problem of defini@yin detail. In section 4, we will
discuss the ergodic properties of the dynami®shas a unique invariant state and is mixing.

The basic ingredient for the construction of the Kolmogorov-Sinai invariant of a
classical dynamical system is a partition of the phase space of the system into disjoint sets.
The dynamics induces an asymptotic refinement on such partitions and this is measured in
terms of an entropy. A similar scheme can be used for quantum dynamical systems by
replacing partitions of the phase space by ‘operational partitions of unity’. The resulting
construction, which is based on an idea of Lindblad, has been presented in [3]. We will
briefly sketch it in the preliminaries section.

However, whereas in the classical case any finite partition of phase space can be used
as a starting point, one has to be much more careful in the non-commutative situation.
Along with the dynamics, the non-commutativity of the system is a source of entropy and
one should only allow ‘reasonable’ partitions. In fact, asking for the proper partitions of
unity is a mathematical matter which can be expressed in physical terms by considering
the question of which measurements are physically allowed. Indeed, it is by means of a
partition of unity that one creates a coupling between the physical system and a measuring
device (an array of spin-objects). For example, measurements that produce by themselves
at a fixed rate a non-zero entropy should not be permitted.

Our aim in this paper is twofold. In the first place we produce a simple model of
irreversible dynamics and show that the statistical description in terms of partitions of unity



Entropy of an irreversible quantum dynamics 5991

can be used without problems. A second aim is to understand in a simple example which
partitions can be allowed for. In particular, we will show that partitions that differ only
‘infinitesimally’ from the trivial partition form a reasonable class. More precisely, we will
consider partitions generated by elements that are, up to compact perturbations, multiples
of the identity. In fact, we will only work with a subset of the compact operators, namely
the union of the von Neumann-Schatten claséggp > 1).

Section 5 contains the more technical lemmas needed for later calculations, in particular
on approximations of compact operators by finite rank operators that are sufficiently good
to control the entropies they generate. The main results are to be found in section 6. In
a first lemma, we prove that log 2 is an upper bound for the dynamical entro@ywvath
respect to the invariant state. A slight modification of this proof shows that the trivial
dynamics, computed with compact partitions, produces zero entropy. In a second lemma,
we put forward a partition of size 2 which reaches the entropy bound log 2, leading to the
conclusion that the entropy of our dynamical system equals log 2.

2. Preliminaries

We will start this section by reminding ourselves of the construction of the dynamical
entropy for a discrete dynamical system [3] and stating a continuity property.

Let M be a von Neumann algebra of operators acting on a Hilbert sieared letQ be
a normalized cyclic vector faM, defining a state» on M. The single time-step evolution
is given by an automorphis® (later on we will weaken this condition to a homomorphism)
implemented by a unitary operatéf such thatUQ = Q@ andUMU* = M. In case a
dynamical system is given in terms of(d-algebra one can make the Gelfand—Naimark—
Segal (GNS) construction to obtain the von Neumann algebra picture.

An operational partition of unity of sizke is ak-tuple X' of elementsy; € M satisfying

k-1

*
E x'x =1
i=0

A partition X = (xo, ..., x,—1) evolves in time according to
O(X) = (B(xg), ..., O(x-1))-
It can be composed with another partitiph= (yo, ..., y,_1) to yield

X oY = (x0y0, X0¥1, - - - » Xk—1Ye—1)

which is of sizekt.
To any partitionX’ of size k we associate & x k) density matrixp[X] with (i, j)
matrix element(x; 2, x;2). The entropyH,[X] of the partition X is then

k—1
Hi[X] := S(p[ X)) = S(Z |x,-sz><x,~sz|>
i=0

where the von Neumann entrof8(p) of a density matrixp is computed as Ty(p) with

n(0) = 0 andn(x) = —xlogx for 0 < x < 1. The equality of the two von Neumann
entropies is a consequence of the fact that both density matrices have, up to multiplicities
of zero, identical spectra [4]. To see this, one has to consider the vBgtes > . ¢;  x; 2,

(eo, . .., ex—1) being a fixed orthonormal basis @F. This vector is normalized and cyclic

for M, ® M. The restrictions of the pure vector st@fey) (Vv | to M, and M, respectively,

are exactlyp[X] and Y, |x; Q) (x;<2].
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By composing the partitiont’ with its subsequent time evolutions we can construct
larger and larger density matrice$®" 1(X)o--- o0 ®(X) o X] on M,?[O'"’l]. These are
right-compatible for different: in the sense that the partial trace over the last tensor factor,
corresponding to timé: — 1), yields the density matrix up to tim@ — 2). Therefore, these
matrices define a statey on M. The dynamical entrop¥ e .,[X] of the partition X
is then the mean entropy density @f, i.e.

1
h(@’w)[X] = lim SUp—H(w)[®n_1(X) o---00(X)o X]
n N

Consider a unitak-subalgebrad of M which is globally invariant unde®. The
dynamical entropyhe .4y iS obtained by taking the supremum of the dynamical entropy
over all finite partitions in4

h©,0.4 = Suphe u[X]. (%)
XcA

The statewy on MP" can be expressed more explicitly by means of mBpswhere
for A = [a;;]i j=0,.. k-1 € My, E4 is given by [5]

Es:M—> M:x— Za,-jxi*®(x)xj.
iJ
A straightforward calculation yielde on elementary tensors
wx(Ag®@ - ® Ay-1) = 0((Epy 000Ky, )(D)).

It is this formula that we will use for the calculation of the dynamical entropy of a partition
of unity. We first state a continuity property of the entrdgy,,[X] of a partition.

Lemma 1 Consider two familiest@ = (x{”,...,x) and Y@ = (3§, ..., y)) of
partitions,« =0, ..., n — 1, such that

n—1
1
@ _ @ i =0,....k—1 2% =
”'xl yt || < eol (l il ’ ) azoea < 3

Then

1 1
‘;H(m[)(("l) 00 X9] - ;Hm)[y("*l) o--0Y?]

n—1 n—1
1
< (Zk E ea> log(2k) + —77<2k E ea)
a=0 n a=0
for any statew.

For the proof we refer to [5].

The set of compact operatots(H) on a Hilbert spacé{ is the norm closure of the
ideal of finite rank operators or equivalently the set of operators that map uniformly bounded
subsets of{ into pre-compact sets [6]. Every compact operatdras an essentially unique,
norm convergent expansion

A=) € (gl
n=1

where eachu, > 0, u1 > us > --- and {&,} and{¢,} are orthonormal setsu, are the
non-zero eigenvalues 0fA| = U* A, ¢, are the corresponding eigenvectors gpne= Ug,.
The possibility of degenerate eigenvalueg 4f causes the lack of uniqueness.
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For anyp > 1 the Schatten clas§, is defined as

1/p
L,= {A e K(H) | |All, = (Zufj) < oo}.

n=1

For p = 1 we get the trace class operators ane: 2 corresponds to the Hilbert—-Schmidt
operators. Sincéu,), is a decreasing sequence we can write

N
Nk <Y ub < Al

n=1

such thatuy < ||All,/NY?. This allows us to formulate the following lemma.

Lemma 2 ForanyA € £, and anye > O there exists an operatdrny of finite rank N — 1
such that]|A — Ay|| < € and

<[]

where [] denotes the smallest integer larger than

Proof. ChooseA € £, € > 0 and set

v (ALY, 8
= (= N =D i) (gl

n=1
Then
Al
N1/p

A —Anll = <e. O

D alén) (]

n=N

=UN S

3. Construction of the dynamics

We will look for a unity preservingx-homomorphism® of B(H) which satisfies
equations (2) and (3) in the introduction and thus also equation (4). Consider therefore
two operatorsig, u; € B(H) which satisfy the Cuntz relations [7]

uouy +ugu; =1 uguo = ujus = 1.
Equivalently, the map
U HOH — H:u= (uguy
is unitary with adjoint
u*:H—>’H€BH:u*:(u§>.
U
The dynamic® on B(H) is then given as

oor=a(t ) -n(3 5)(2)

In fact, the previous formula is precisely the Stinespring decomposition of the

x-homomorphism® of B(H).
We will show that (2) and (3) hold iff

(uj@)(x) = exp2ril;x)p(O(x)) (=01
wherely, [1 € Z have different parity.
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Writing (2) more explicitly as
uoMyug +urMyuy = Myeg
and multiplying byug on the right-hand side we get
uoMy = Myguo.

Let us denote the constant function with value 11byApplying the previous line td and
evaluating this at a point € [0, 1] we see that

(uof)(x) = f(Ox)[uo(D)](x).
Let w € B(H) be the operatofwe)(x) := ¢(6(x)). A small computation shows thai is
an isometry:w*w = 1. We use this to writef = w*g with wf = g. This implies
(uow™g)(x) = [uo(D](x)(wf)(x) = [uo(D](x)g(x).
From this, we can conclude thap(1) € £*([0, 1]) and thatuow* = M,,1). A similar

argument can be given for; leading to the existence of two essentially bounded functions
fo and f1 such that
uszf}.w (j:O,l)
The fact that® is a unity preserving homomorphism will impose some conditionsf®n
and fi.
It is sufficient to check the validity of identity (3) for the multiplication operatdfg
and the shiftsU,, because the multiplication operators and the shift generate a strongly

dense subalgebra #f(7) and we consider here strongly continuous homomorphisms. The
relation

(Txrg © ©)(My) = (O 0 T2y) (My)
is a direct consequence of (1) applied o Using the definition of,, we see that
(Txy © ©)(Uy,) = (O 0 72)(Uyy)
is equivalent to
Uxo®(Ux1) = ®(Ux1)Uxo
for all xp, x1. The spectral decomposition of,, reads
Uy =y €k (|
keZ
with ¥*(x) = exp(i2rkx) and
OUy,) = Y _ 2™ e (y*) (y")

k

= D & (luoyh) oy | + Juayr* sy )
k

= D @My N My | + My ) (M, )
k

which is the spectral decomposition®{U,,). If we wantU,, to commute with® (U,,) we
see that we have to impogg = ¥ and f; = ¥*. The conditions onf, and f, mentioned
before are satisfied iff the parity & and!/; are different.

Using the explicit formula

1 . 1
) () = exp(—ml,-x)(w(%) + (—1)’f<p<)%)) (j=0.1

one easily verifies that relations (2) and (3) are satisfied i§ of the derived form.
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4. Ergodic properties

Consider the inner product
(0, A) > {p, A) :=TrpA

between the trace class operatgigH) andB(H). The map® has a pre-adjoin®, which,
from (©,(p), A) = (p, O(A)), is explicitly given by

O.(p) = ulpuo + ujpus p € LYH).

We will look for density matrices that are invariant undgy or rather for density matrices
that describe the behaviour of normal states for large times. This will lead to a particular
choice of the integerg and!; in the definition ofug andu in order to arrive at a dynamical
system with optimal ergodic and mixing properties.

We will exclude the case wheré, — /1] > 1 in order to avoid periodic behaviour.
Suppose indeed th& < m < [; with m € Z and thatly is even (and henck odd). Using

y loth/2 if k even Y (Thth/2 if kK odd

* 1 k * 1k
V=10 if k odd =0 if k even
one easily sees th&. (|[y"™) (™) = |Y")(¥"| with [ < r < I; andr # m. This means
that subsequent applications @f, will transform |™)(y"| into itself via at least one
intermediatgy")(v"| (lo < r < I1) and that we obtain a periodic behaviour. From now on
we restrict our attention th = lp + 1.
Let us introduce the two projection operators

Po= Y Whwt Pe= D0 vl
k<—lo—1 k=—lo

such thatP_ + P, = 1. It takes a straightforward calculation to see that* € PLH as
soon asy* € P.H (e =0, 1), meaning thaiP.© (A) P = @(A) as soon aP+ APy = A.
This allows us to consider only the subalgebtaf those operators for which, AP, = A,
or equivalently B(P.H). The benefit of this will be the existence now of a unique
invariant normal statgy ') (s '| (see theorem 1), whereas there are two invariant states
[ =) ("o and [y o) (¥ 0=t on B(H).

From now on we choos& = 0 and hencd; = 1. This particular choice is quite
convenient as it agrees well with the binary expansion of a natural number (see lemma 3).
All subsequent results will be independent of the valugyof We have now arrived at

the following model: consider ii?(N) the canonical orthonormal basig®, v*, ..., } of
sequenceg’ = (8jn)nen @nd the isometriesy andu, defined by

for k € N. The single step time evolution oA = B(¢3(N)) is given by

A ugAul + urAuj.

Lemma 3 Introducing the notatioB(¢,_1, ..., €) = Z?;& ;2" we have

yk if p=B(ey_1,...,€0)

* * o pHk2" __
u: ooy = .
€n-t € { 0 otherwise

with €,_1,...,60€{0,1},0< p < 2" — 1 andk € N.
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Proof. We prove this by induction on. The statement holds for = 1. The induction
stepn — n + 1 can be seen as follows. We have to compute

® ok pHk2+t
an an—l ufo

with 0 < p < 2'*1 — 1 andk e N. Therefore, we writep = p' + k2" (0< p’ < 2" — 1).
k' must be either 0 or 1 and

whut ot PR =t Ll R
— u (”e” L. ~”:0 p/+(k/+2k)2")
u; K+2k if B(€,_1,...,€0) =p'
B {0 otherwise
Yk if ¥ =¢, andB(¢,_1,...,€0) = p’
B {0 otherwise.
The condition on the last but one line is equivalentB¢,, €,_1, ..., €) = p, which
completes the proof. |

The next result shows that any state dngiven by a density matrix relaxes to the
unique invariant vector state determined 1.

Theorem 1 For any normal state, on A given byw,(-) = Tr(p-) we have

lim 110" (o) = [¥ ) (1l =0

Proof. It is sufficient to prove that
lim 100" (@) (@) — 1¥°) (¥ Il =0

for any normalized vectop = )", ¢ ¥* with ¢ € C.
The time evolved vector state can be written as

©)" (Mo = Y |ul ,...ul)ul ...ul gl

€n—1..-€0
2"—-1,2"-1 n_1
— * k2" * 2"
=D 31D 3) SINNTRTELS'S up prATR
p=0"!p'=0 k>0 p'=0 k>0

where we replace the summation over thls by the summation over their decimal
expansion. We now use the previous lemma to write

Z Otk ¥ k>< Z Ppriz " ’

k=0 k=0

-
= Zkopw Weop¥ |+Z|<pp °><Z¢p+k2nw"‘

k>0
0
E Oprk2 VY ><(ﬂp¢ |

k>0

D Gpriz ¥y k>< > Pz Iﬁk'-

k>0 k>0

(©.)"(Ip)(]) = Z

o
+ Z

on_

+Z
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It is clear that the first term will converge 1¢/°) (v°| in the trace norm. The trace norm
of the remaining terms will vanish astends to infinity. We show this for the second term.
The other terms can be treated in a similar way

2"-1

¢O>< > opua || <D |l 1/f0)< Y oprz ¥
k>0 1 p=0 k>0 1
2'-1 2" %
Z |§0p (Z |¢p+k2” ) < (Z |§0p| ) (Z Z |§0p+k2” ) .
k>0 p=0 p=0 k>0

The first factor will converge tdip||?> = 1 while the second factor equals

(Z |¢k|z>;

k=2

which converges to zero. O

Theorem 2 The spectrum of with respect to the algebrd consists of the closed unit
disc.

Proof. Let u be any complex number in the open unit disc. We show that there exists a
trace class operatgy, such that®..(p,) = up,. We propose

W= Ml
i=0
with 4; € C. If p, is to be an eigenvector @, the A; have to satisfy
Whi = Aai + Azt (6)
This requirement is fulfilled by the following choice af: setio =1 and fork > 0 set
Aok = Agkyy = -+ = Agerig = w

This makesp,, into a trace class operator

ZIKI—1+ZZIAzk+mI

i=0 k=0 m=

_ Vil
=1+ |pu— 1IZZ

k=0 m=

=1+|M—1|2|H|
k=0
and this infinite sum is converging sinfge| < 1. Furthermore, it is clear thathg = Ag+ A1
and by writingi > 1 asi = 2* +m with k > 0 and 0< m < 2¢ — 1 one easily sees that
condition (6) is met for alk.
As @ is the adjoint of®,, its spectrum contains at least the closed unit disc. On the
other hand it is contained in the same disc becad®ams norm 1. Therefore the statement
follows. O

Theorem 3 The only eigenvalues o are 0 and 1. Up to scalar multiples, the only
eigenvector of® corresponding the eigenvalue 1 is the unit operator.



5998 J Andries et al

Proof. Letu be in the spectrum and suppose thas a corresponding eigenvector. Choose
integersk, ! > 0 and take a positive integer such thaf < 2" — 1. From@®"(A) = u"A
we have

w Yk, Ayl = (¥, " (A)y')

2"—-1
= Zw?p)wk’ A”?p)wl)
p=0
0 if k1
| wO Ay if k=1.

If ©# 0 andu # 1, we can conclude that/*, Ay') = 0 for all k,! > 0 and soA = 0.
Therefore, only 0 and 1 can be eigenvalues.

For n = 1 we see thaty*, Ay!) = 0 if k # [ and (v, Ay*) = (¢°, Ay0) for all
k > 0 and henceA € C1.

To end the proof we mention that the eigenvectors corresponding to the eigenvalue O
are those operators for whigly*, Ay') = 0 if k¥ and! have the same parity. |

Lemma 4 The pure statey : A — (¥, Ay°) is mixing under®, i.e.
lim wo(©"(A)B) = wo(A)wo(B)
n— o0

for any two operatorsi, B € A.

Proof. For any two operatord and B in A, we have
-1

wo(©"(A)B) = > (¥, ugp Auj, BY°)

p=0

= (¥°, Aug' BY°)

= > WO Augv (vt ByO)
k=0

= > WO AvhHw?*, ByO)

k=0
S0, separating out the terin= 0, we see
|wo(©"(A)B) — wo(A)wo(B)| < Y 1(¥° Ay*)|[(w?*, ByO)|

k=1

< (ZIWO,AW)IZ)Z(ZW”", Bw°>|2)2

k>1 k>1

< IIA*W’”(Z w, Bw°>|2>2

k=21

which tends to zero as goes to infinity. O

5. Technical lemmas

Lemma5 An operatorr =al+K (o € C, K € £,,) on a Hilbert spacét can be written
in the formx = U|x| whereU is unitary andU, |x| € C1+4 L,.



Entropy of an irreversible quantum dynamics 5999

Proof. Take as a starting point the polar decomposition: ef U|x| whereU is defined
as

Ulxlp = x¢
Up=0 if ¢ € Ker(|x|) = Ker (x).

An operatorA € B(H) is said to be Fredholm if its range is closed and both(Ker
and Rarid)* are finite-dimensional. For Fredholm operators, the index is defined by
Ind(A) := dimKer(A) — dimRar(A)*. If A is Fredholm andC is compact, them + C is
Fredholm and In¢A) = Ind(A + C) [8].

Because Indl) = 0, we have In@dx) = 0 and therefore

dim Ker(x) = dim Ran(x)* < oo.
This admits the definition of a finite rank isomorphism
@ : Ker(x) — Ran(x)*

which can be extendgd tH by putting Kek®) = Ran(|x|).
If we defineU = U + ® we can immediately verify that/ U* =

UU* = UU* + d* + Ud* + oU*
= Prarx) + Prarryr =1

A

asU®* = ®U* = 0. Along the same lines
U*U = U*0 + &*® 4 o*U + U*d
= PRaI’(x*) —|— PKer(x) = :“

as®*U = U*d = 0.
It remains to prove thal/ and|x| belong toC1 + £,. From

Ix|? = x*x = |1+ «K* +aK + K*K

we see thaf|x|+ |a|1)(|x| —|«|1) € £,. Becausdx| is positive,|x|+|«|1 is invertible and
this implies thatx| € |a|1+ L, sincel,, is an ideal. Furthermore, = U|x| = U(Ja|1+L)

with L € £, so|a|U € all+ L, or finally U € («/laDA+ L,. O
Lemma 6 For any partition of unityX’ = (xo, ..., x,—1) C B(H) in elements of the form
xi =01+ K; a; € C, K,‘Eﬁp

there is a constan€ such that we can construct for eveey> 0 a partition) with
lx; — yill <€ (i =0,...,k—1). Furthermore) is of the form

yi =Bil+K; B: € C, K, finite rank
with K; = PsnK; Pin Where Py, is a projection of dimension
C p
v=z(3) ]
€

at most.
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Proof. Choosee > 0 and let O< ¥ < 1 be a real number, close to 1, which we will
specify later on and will depend an Definek operators; = yx;. For thisk-tuple we see
that ||lx; — z;| < 1—y and || X5 77zl < v2

The first (k — 1) elements ofy will be defined by cutting off the compact operators,
appearing ir;, to finite rank operators such thE"_g y¥yi < 1. One way to achieve this,

is to require that

k—2 k—2
dogu—) v
i=0 i=0

This requirement can be met by asking thaty
1-y*
k-1

<l—y2.

x—2 Should satisfy

.....

lzi — yill <

since one then has

k=2 k=2

* *
ZZiZi - Zyi )’i{
i=0 i=0

k—

N

lzi Mz = yill 4+ lizf = y7 Iyl

N
=~
Il
NS

y”Zl = yill +llzi = yilllzi — yill +v)

T
N O

<3 2z - yill + llzi — yill?

<3k -1 _max Iz =il

o

Let us fix a collectiony; (i =0, ..., k — 2) making sure that
1- 1- y <e.
3(k 1)

To constructy;_;, we use lemma 5 to write

Xk—1 = Ulxp_q|

k=2

=U ]l—in*xi

i=0

whereU = %1+ L (L € L,) is a unitary operator. Because of the unitaritylof the
structure ofL will be

L= (" —&%)p,) (gl

n=1

=Y _1€% — €%||5,) (gl

n=1

which gives us the canonical decomposition/oprovided that we arrange thg, in such

a way thatlexp(i9,) — exp(ifp)| is a decreasing sequence, converging to 0.
Approximating L by a finite rank operatof., i.e. restricting the norm convergent sum

to a finite number of terms, we get a new unitdry= exp(ifo)1 + L. We now put

Veer:=U JI—ZY,-*)’I'.

i=0
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Note that) is a partition of unity becaus&*U = 1. The norm difference between
zx—1 and y,_; can be estimated as follows

k-2 k—2
-1 — za—1ll < HU 1= "yiyi—U [y 2z
i =0 i=0

k—2 k—2
< ”U”M 1=y J yA - "z
i=0 i=0

+||17—U||H

k-2
y21— Z Z7 7|
i=0

Using lemma 9 and applying the triangle inequality we get

1/2 y
+ U - U]

k=2
k-1 — zx—all < \/BH A=)+ @z — ¥y
i=0

<V12/1— 924U -U|.

If we now determinel/ in such a way thatiU — U|| < (1 — y?)¥/2 and if we put

€

1—92=-
"%
then|lx; — yill <e i =0,...,k—1) since fori =0,...,k—2
It — 31l < s — 20+ i — il < A= ) + o=t
Xi = Vill S X — Zi i—Yill <{d—=
Y il =y T3k -1

<1-yH+A-y>H<2/1—y =§<e
and also
ks = yicall < s = zecall + lzees = yecall S A=) + VIV 1—y2 4+ /1 y?
<V1-y24+V12/1—9y24+/1-y2<6/1—y2 <e.

The question remains about the number of dimensions on whiclk thappearing in
vi, live. They; fori =0,...,k — 2 were defined by demanding that the norm difference
between the compact operator in (which is in £,) and the finite rank iny; be smaller
than

1— }/2 _ 62
3k —1) 108k — 1)
meaning that we can chooge (i =0,...,k —2) to be of rank
108k — 1)C,\’
62
whereC, = max{||Koll,, - -, | Kk-2llp, ILll,}. From this we can conclude that there is a

finite-dimensional subspade C H of dimension at most

26— 1) [ ( 108(k; 1C, >,}
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such thaty, = Pyyi Pu+BiPyr (i =0, ..., k—2) and|ye-1| = Pyl yi-1|Pu +|Br-1 Py
The last aspect to be considered is the rank ofSince

€2 € €

— 0 < =<

108k —1) 36 6
we can give a rough estimate that there exists a finite-dimensional subBpdtgeof at
most dimension

2/{ (108(k —-1C, )'}
62

such thatk; = P, K; Pin. The proof is finished by putting = 108k — 1)C,. O

6. Dynamical entropy

Lemma 7 For any partition of unityX = (xo, ..., xt_1) in A of the form
xi =01+ K; (i €C,K; € L)

we have:
h@©.0n[X] < log 2

Proof. Choosee > 0 and consider the decreasing sequesce= ¢/(a + 1)2. By taking
¢ sufficiently small we can make

ZkZea

a>0
arbitrarily small. ~ Using lemma 6 we can find a sequence of partitiohs =
G, ..., 5% and a sequence of projectiots (o > 0) satisfying
i =3 <€ (G=0,....k—1)
5 = P9 Py + B BF i =0,...,k—1
Yi = La); a+,31a i=0,..., )
. A A C D\
dim(2,(H)) = N, = Zk[((a—l_)> }
€
We now consider the sequeng&® = ©%(X) and Y@ = ©%()®). Since® is not
norm increasing
1 =y < & (i=0,....,k—1)
still holds. Furthermore, because
OE)(x) = luoé) (uox | + luaé)(uax|
there exists a sequence of projectidissuch that
W = Pyy @ Py + Bi Pt (i=0,....k—1)
. C D\
dim(P, (H)) = Ny = 2“+1k[<(“—7;)) }
€

From this we can conclude that the density magiy ™~ o - - . o Y©] will be living on a
subspace of dimension bounded by

1 & 1 on C ra 4p 1 on c ’ 4p+1
+Z;Na< +k2'( Z(:)a <L+k2' () n
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and hence

. 1 . 1 cy
im ZHy[V" Po... 0 Y@ < nll_)moo ~ log (1 + k2 <§> n4”+1> <log2.

n—oo n

Since we can make the right-hand side of the estimate of lemma 1 arbitrarily small, this
finishes the proof. O

Lemma 8 X + he..)[X] reaches its upper bound log2 on the partitibn= (xo, x1)
given by

, \/é ¢ ¢
1 0 k.1
= — + (-1 k=0,1
&k ﬁ(w =Dy

Proof. The lemma follows from the fact that the staig on M?N is the normalized trace,
ie.
wx(A" @ @ A% = (YO, Egnro--- 0 Epo(M)y°)
=tr(A" '@ .. -@ A9%.
In order to prove this, we introduce the notatidn= C(B, C € B(H)) iff B — C is
a linear combination of rank one operators of the fonf)(y!| (k,I > 0) with k or [

different from 0. In that casey(B) = wo(C), wherewy is the vector state defined hyP.
So it is sufficient to prove that

m—1 4k k k k
- Ak + Ak 4+ AE + A
(Egnio--oEs)(l) = (tr(A'" te- @A) - [ —E 1°>|w°><w°|

k=0

m—1 k k k k

(Ak + Ak + A+ Ak
+< l_[ 00 11 > 01 10 )]l (7)
k=0

sincewo(1) = wo(|¥°) (¥°)) = 1. This can be done by induction
E (1) = Z Aijxixi = AooxgXo + A11x1x1 + Ao1x1xo + A10Xg X1
iJj

Ao+ Ann
2

A . .
+%)(11 + (i = DI&2) (5] + (=1 = D)[€o) (€oD).

Expanding|£.) (&| and collecting the terms containing 1 ant) (v°|, yields

App+ A1+ A1+ A Agr+ A
]EA(]I)E< 00 112 01 1o>:“_< 012 10) WO 0.

To prove the induction step frorim — 1) to m we need to check two points. The first
one is

A . .
1+ TOl(Jl + (I = Do) (5ol + (=1 — DI&1)(52])

A A
Ea (10 ($°]) = (%) 90 (40

which can be seen by a calculation similar to thaffiafl). The second point to notice is
that E4(B) = E4(C) as soon a8 = C, which reflects the fact thak, (|v*)(v'|) (k or{
different from 0) cannot be equal to 1 oy °) (/9.
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If we suppose that (7) is true for, we have for(m + 1):

Epn 0+ 0Ego)(A) = Egu(Epn-io...o0E4w)d))

m—=1 4k k k k m m
. Afo+ Ay + Af + AL\ Afy+ A
z(tr(A 1®"’®AO)_H 00 112 01 10) 002 1110y (49|
k=0
" ﬁ Afo + Al + AGy + Allg | Ago + ATL + AGL + Arlno:“
o 2 2
m—1 m m
_ l—[ Ago + ALy + AG + Al Agy + A10|1//o><1//0|
o 2 2
m Ak Ak Ak Ak
_ (tr(A'” @ @A% - [ [ PRt fut 1°)|w°><w°|
k=0
+< ﬁ (Ao + Ay + Apy + Alio)>:“.
k=0 2
Taking the expectation valug, of expression, we obtain the desired result. O

From the last two lemmas we can conclude the following theorem.

Theorem 4 The dynamical entropy o with respect to the stateg is
h(@,wo) e |Og 2

where the supremum in definition (5) of the dynamical entropy is taken Byeggartitions
of unity.
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Appendix

Lemma 9 Let0< A, B < 1 be two operators on a Hilbert space. Then

IAY2 — BY?| < V6| A — B|"2.
Proof. Starting from the spectral decomposition

1 1
A:/ AAEA () B:/ AdEg (L)
0 0

we set

Y 1
As=/ AAEA(A) A,:/ AAEA(L)
0 Y

Y 1
B, =/ AdEz(L) B =/ AdEz(V)
0 14



Entropy of an irreversible quantum dynamics 6005

with 0 < y < 1. We obtain the following inequalities
IVA =Bl = IVA + A, = VB + B
< IVA = VBl + IVA, = VB
< IVA = VBl +247.
Using the series expansiofl — z = 1 — D is1 a;z* and applying a telescoping argument

VA — VBl = IV1I—A—A) —y/1— A= B
< Y alld—AY* — A - B
k

< Y ak(—y) A - Bl
k

1
< A — Bl
2.y
1
<A —Al+ 1A= B+ 1B — lel)—
\/_
<@y +11A-Bl) L
y =
\/—
which results in the estimate
BII
IvVA - vB| <3 ;1A= Bl
Y J?

Puttingy = ||A — B||/6, which optimizes the previous line, we obtain the result. O
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