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The entropy of an irreversible quantum dynamics

J Andries†, M De Cock‡ and M Fannes§
Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, Celestijnenlann 200D,
B-3001 Heverlee, Belgium

Received 21 November 1997

Abstract. We consider an irreversible quantum dynamical system that mimics the classical
phase doubling mapz 7→ z2 on the unit circle and study its ergodic properties. The main result
of the paper is the computation of the dynamical entropy (log 2) using compact perturbations
of unity as operational partitions of unity.

1. Introduction

A standard example of an irreversible classical dynamical system is the map

θ : [0, 1[→ [0, 1[: x 7→ 2xmod 1

which leaves the Lebesgue measure invariant. Another version of this system is the phase
doubling mapz 7→ z2 with a Lebesgue measure on the unit circle. Yet another equivalent
formulation is the left-shift of the spin chain{0, 1}N with the Bernoulli measure that assigns
a probability of 1/2 to both 0 and 1. In this paper, we will stay with the first picture.

The phase doubling map is chaotic, meaning that there exists a positive Lyapunov
exponentλ, defined as

λ := lim
n→∞

1

n
log |Dx(θ

n(x))| = log 2.

With quantization in mind, we can use the shift

Tx0 : [0, 1[→ [0, 1[: x 7→ x + x0 mod 1

to put the notion of the Lyapunov exponent in a form suitable for an algebraic description
by writing

θ ◦ Tx0 = T2x0 ◦ θ. (1)

This expresses the simple fact that shifting a point over a distancex0 and applying the
dynamics produces the same effect as first applying the dynamics and then shifting over
twice the original distance.

It is our aim in this paper to introduce an irreversible dynamic2 on B(L2([0, 1], dx))
which corresponds to the classical phase doubling and to study its entropy. We will consider
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for 2 a non-invertible, unity preserving,∗-homomorphism and impose that it acts on the
multiplication operators in the same way as the classical dynamics

2(Mf ) = Mf ◦θ (2)

Mf being the multiplication operator onH = L2([0, 1], dx) by the function f ∈
L∞([0, 1], dx). Let us stress, that we consider2 as a dynamic on the whole ofB(H),
not only as a map on the multiplication operators. This approach is quite different from
the approach taken in, for example, Baker [1], where a unitary evolution on a finite-
dimensional vector space is constructed to mimic the classical Baker transformation. There
is certainly not a unique homomorphism satisfying (2). Therefore, we impose some
additional conditions on the dynamics.

Consider the unitary operator

(Ux0ϕ)(x) := ϕ(T−x0x) ϕ ∈ H
and the automorphismA 7→ τx0(A) := Ux0AU

∗
x0

it implements.τx0 corresponds on the level
of the observables to a right-shift over a distancex0 in position space. It is natural to ask
that for anyx0 ∈ [0, 1[

τx0 ◦2 = 2 ◦ τ2x0 (3)

since this relation, restricted to multiplication operators, yields (1) again. Following the
set-up of [2], expression (3) indicates the existence of a quantum Lyapunov exponent log 2.
One could say that the dynamics stretches the position observable by a factor 2. As2

conserves the commutation relation between position and momentum it is to be expected
that the momentum observable will shrink by a factor 2 under the dynamics. To see this, we
introduce the group of automorphisms{σk | k ∈ Z} determined by the unitariesMψk , where
ψk(x) := exp(i2πkx). σk describes on the level of the observables a shift in momentum
space. It follows then immediately from (2) that

σ2k ◦2 = 2 ◦ σk (4)

showing the presence of a second Lyapunov exponent− log 2.
In section 3, we deal with the problem of defining2 in detail. In section 4, we will

discuss the ergodic properties of the dynamics:2 has a unique invariant state and is mixing.
The basic ingredient for the construction of the Kolmogorov–Sinai invariant of a

classical dynamical system is a partition of the phase space of the system into disjoint sets.
The dynamics induces an asymptotic refinement on such partitions and this is measured in
terms of an entropy. A similar scheme can be used for quantum dynamical systems by
replacing partitions of the phase space by ‘operational partitions of unity’. The resulting
construction, which is based on an idea of Lindblad, has been presented in [3]. We will
briefly sketch it in the preliminaries section.

However, whereas in the classical case any finite partition of phase space can be used
as a starting point, one has to be much more careful in the non-commutative situation.
Along with the dynamics, the non-commutativity of the system is a source of entropy and
one should only allow ‘reasonable’ partitions. In fact, asking for the proper partitions of
unity is a mathematical matter which can be expressed in physical terms by considering
the question of which measurements are physically allowed. Indeed, it is by means of a
partition of unity that one creates a coupling between the physical system and a measuring
device (an array of spin-s objects). For example, measurements that produce by themselves
at a fixed rate a non-zero entropy should not be permitted.

Our aim in this paper is twofold. In the first place we produce a simple model of
irreversible dynamics and show that the statistical description in terms of partitions of unity
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can be used without problems. A second aim is to understand in a simple example which
partitions can be allowed for. In particular, we will show that partitions that differ only
‘infinitesimally’ from the trivial partition form a reasonable class. More precisely, we will
consider partitions generated by elements that are, up to compact perturbations, multiples
of the identity. In fact, we will only work with a subset of the compact operators, namely
the union of the von Neumann–Schatten classesLp (p > 1).

Section 5 contains the more technical lemmas needed for later calculations, in particular
on approximations of compact operators by finite rank operators that are sufficiently good
to control the entropies they generate. The main results are to be found in section 6. In
a first lemma, we prove that log 2 is an upper bound for the dynamical entropy of2 with
respect to the invariant state. A slight modification of this proof shows that the trivial
dynamics, computed with compact partitions, produces zero entropy. In a second lemma,
we put forward a partition of size 2 which reaches the entropy bound log 2, leading to the
conclusion that the entropy of our dynamical system equals log 2.

2. Preliminaries

We will start this section by reminding ourselves of the construction of the dynamical
entropy for a discrete dynamical system [3] and stating a continuity property.

LetM be a von Neumann algebra of operators acting on a Hilbert spaceH and let� be
a normalized cyclic vector forM, defining a stateω onM. The single time-step evolution
is given by an automorphism2 (later on we will weaken this condition to a homomorphism)
implemented by a unitary operatorU such thatU� = � andUMU∗ = M. In case a
dynamical system is given in terms of aC∗-algebra one can make the Gelfand–Naimark–
Segal (GNS) construction to obtain the von Neumann algebra picture.

An operational partition of unity of sizek is ak-tupleX of elementsxi ∈M satisfying

k−1∑
i=0

x∗i xi = 1l.

A partition X = (x0, . . . , xk−1) evolves in time according to

2(X ) := (2(x0), . . . , 2(xk−1)).

It can be composed with another partitionY = (y0, . . . , y`−1) to yield

X ◦ Y := (x0y0, x0y1, . . . , xk−1y`−1)

which is of sizek`.
To any partitionX of size k we associate a(k × k) density matrixρ[X ] with (i, j)

matrix element〈xj�, xi�〉. The entropyH(ω)[X ] of the partitionX is then

H(ω)[X ] := S(ρ[X ]) = S
( k−1∑
i=0

|xi�〉〈xi�|
)

where the von Neumann entropyS(ρ) of a density matrixρ is computed as Trη(ρ) with
η(0) = 0 andη(x) = −x logx for 0 < x 6 1. The equality of the two von Neumann
entropies is a consequence of the fact that both density matrices have, up to multiplicities
of zero, identical spectra [4]. To see this, one has to consider the vector9X =

∑
i ei⊗xi�,

(e0, . . . , ek−1) being a fixed orthonormal basis ofCk. This vector is normalized and cyclic
forMk⊗M. The restrictions of the pure vector state|9X 〉〈9X | toMk andM, respectively,
are exactlyρ[X ] and

∑
i |xi�〉〈xi�|.
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By composing the partitionX with its subsequent time evolutions we can construct
larger and larger density matricesρ[2n−1(X ) ◦ · · · ◦ 2(X ) ◦ X ] onM⊗[0,n−1]

k . These are
right-compatible for differentn in the sense that the partial trace over the last tensor factor,
corresponding to time(n−1), yields the density matrix up to time(n−2). Therefore, these
matrices define a stateωX onM⊗Nk . The dynamical entropyH(2,ω)[X ] of the partitionX
is then the mean entropy density ofωX , i.e.

h(2,ω)[X ] = lim sup
n

1

n
H(ω)[2

n−1(X ) ◦ · · · ◦2(X ) ◦ X ].

Consider a unital∗-subalgebraA of M which is globally invariant under2. The
dynamical entropyh(2,ω,A) is obtained by taking the supremum of the dynamical entropy
over all finite partitions inA

h(2,ω,A) = sup
X⊂A

h(2,ω)[X ]. (5)

The stateωX onM⊗Nk can be expressed more explicitly by means of mapsEA, where
for A = [aij ]i,j=0,...,k−1 ∈Mk, EA is given by [5]

EA :M→M : x 7→
∑
i,j

aij x
∗
i 2(x)xj .

A straightforward calculation yieldsωX on elementary tensors

ωX (A0⊗ · · · ⊗ An−1) = ω((EA0 ◦ · · · ◦ EAn−1)(1l)).

It is this formula that we will use for the calculation of the dynamical entropy of a partition
of unity. We first state a continuity property of the entropyH(ω)[X ] of a partition.

Lemma 1. Consider two familiesX (α) = (x(α)0 , . . . , x
(α)

k−1) andY (α) = (y(α)0 , . . . , y
(α)

k−1) of
partitions,α = 0, . . . , n− 1, such that

‖x(α)i − y(α)i ‖ < εα (i = 0, . . . , k − 1) 2k
n−1∑
α=0

εα <
1

3
.

Then∣∣∣∣1nH(ω)[X (n−1) ◦ · · · ◦ X (0)] − 1

n
H(ω)[Y (n−1) ◦ · · · ◦ Y (0)]

∣∣∣∣
6
(

2k
n−1∑
α=0

εα

)
log(2k)+ 1

n
η

(
2k

n−1∑
α=0

εα

)
for any stateω.

For the proof we refer to [5].
The set of compact operatorsK(H) on a Hilbert spaceH is the norm closure of the

ideal of finite rank operators or equivalently the set of operators that map uniformly bounded
subsets ofH into pre-compact sets [6]. Every compact operatorA has an essentially unique,
norm convergent expansion

A =
∑
n>1

µn|ξn〉〈φn|

where eachµn > 0, µ1 > µ2 > · · · and {ξn} and {φn} are orthonormal sets.µn are the
non-zero eigenvalues of|A| = U ∗A, φn are the corresponding eigenvectors andξn = Uφn.
The possibility of degenerate eigenvalues of|A| causes the lack of uniqueness.
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For anyp > 1 the Schatten classLp is defined as

Lp =
{
A ∈ K(H) | ‖A‖p =

(∑
n>1

µpn

)1/p

<∞
}
.

For p = 1 we get the trace class operators andp = 2 corresponds to the Hilbert–Schmidt
operators. Since(µn)n is a decreasing sequence we can write

Nµ
p

N 6
N∑
n=1

µpn < ‖A‖pp

such thatµN 6 ‖A‖p/N1/p. This allows us to formulate the following lemma.

Lemma 2. For anyA ∈ Lp and anyε > 0 there exists an operatorAN of finite rankN −1
such that‖A− AN‖ 6 ε and

N =
[(‖A‖p

ε

)p]
where [x] denotes the smallest integer larger thanx.

Proof. ChooseA ∈ Lp, ε > 0 and set

N =
[(‖A‖p

ε

)p]
AN =

N−1∑
n=1

µn|ξn〉〈φn|.

Then

‖A− AN‖ =
∥∥∥∥∑
n>N

µn|ξn〉〈φn|
∥∥∥∥ = µN 6 ‖A‖pN1/p

6 ε. �

3. Construction of the dynamics

We will look for a unity preserving∗-homomorphism2 of B(H) which satisfies
equations (2) and (3) in the introduction and thus also equation (4). Consider therefore
two operatorsu0, u1 ∈ B(H) which satisfy the Cuntz relations [7]

u0u
∗
0 + u1u

∗
1 = 1l u∗0u0 = u∗1u1 = 1l.

Equivalently, the map

u : H⊕H→ H : u = (u0 u1)

is unitary with adjoint

u∗ : H→ H⊕H : u∗ =
(
u∗0
u∗1

)
.

The dynamics2 on B(H) is then given as

2(A) = u
(
A 0
0 A

)
u∗ = (u0 u1)

(
A 0
0 A

)(
u∗0
u∗1

)
.

In fact, the previous formula is precisely the Stinespring decomposition of the
∗-homomorphism2 of B(H).

We will show that (2) and (3) hold iff

(ujϕ)(x) = exp(2π ilj x)ϕ(θ(x)) (j = 0, 1)

wherel0, l1 ∈ Z have different parity.
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Writing (2) more explicitly as

u0Mfu
∗
0 + u1Mfu

∗
1 = Mf ◦θ

and multiplying byu0 on the right-hand side we get

u0Mf = Mf ◦θu0.

Let us denote the constant function with value 1 by1. Applying the previous line to1 and
evaluating this at a pointx ∈ [0, 1] we see that

(u0f )(x) = f (θ(x))[u0(1)](x).

Let w ∈ B(H) be the operator(wϕ)(x) := ϕ(θ(x)). A small computation shows thatw is
an isometry:w∗w = 1l. We use this to writef = w∗g with wf = g. This implies

(u0w
∗g)(x) = [u0(1)](x)(wf )(x) = [u0(1)](x)g(x).

From this, we can conclude thatu0(1) ∈ L∞([0, 1]) and thatu0w
∗ = Mu0(1). A similar

argument can be given foru1 leading to the existence of two essentially bounded functions
f0 andf1 such that

uj = Mfjw (j = 0, 1).

The fact that2 is a unity preserving homomorphism will impose some conditions onf0

andf1.
It is sufficient to check the validity of identity (3) for the multiplication operatorsMf

and the shiftsUx0 because the multiplication operators and the shift generate a strongly
dense subalgebra ofB(H) and we consider here strongly continuous homomorphisms. The
relation

(τx0 ◦2)(Mf ) = (2 ◦ τ2x0)(Mf )

is a direct consequence of (1) applied tof . Using the definition ofτx0 we see that

(τx0 ◦2)(Ux1) = (2 ◦ τ2x0)(Ux1)

is equivalent to

Ux02(Ux1) = 2(Ux1)Ux0

for all x0, x1. The spectral decomposition ofUx0 reads

Ux0 =
∑
k∈Z

ei2πkx0|ψk〉〈ψk|

with ψk(x) = exp(i2πkx) and

2(Ux1) =
∑
k

ei2πkx12(|ψk〉〈ψk)

=
∑
k

ei2πkx1(|u0ψ
k〉〈u0ψ

k| + |u1ψ
k〉〈u1ψ

k|)

=
∑
k

ei2πkx1(|Mf0ψ
2k〉〈Mf0ψ

2k| + |Mf1ψ
2k〉〈Mf1ψ

2k|)

which is the spectral decomposition of2(Ux1). If we wantUx0 to commute with2(Ux1) we
see that we have to imposef0 = ψl0 andf1 = ψl1. The conditions onf0 andf1 mentioned
before are satisfied iff the parity ofl0 and l1 are different.

Using the explicit formula

(u∗j ϕ)(x) =
1

2
exp(−iπljx)

(
ϕ

(
x

2

)
+ (−1)lj ϕ

(
x + 1

2

))
(j = 0, 1)

one easily verifies that relations (2) and (3) are satisfied if2 is of the derived form.
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4. Ergodic properties

Consider the inner product

(ρ,A) 7→ 〈ρ,A〉 := Tr ρA

between the trace class operatorsL1(H) andB(H). The map2 has a pre-adjoint2∗ which,
from 〈2∗(ρ), A〉 = 〈ρ,2(A)〉, is explicitly given by

2∗(ρ) = u∗0ρu0+ u∗1ρu1 ρ ∈ L1(H).

We will look for density matrices that are invariant under2∗ or rather for density matrices
that describe the behaviour of normal states for large times. This will lead to a particular
choice of the integersl0 andl1 in the definition ofu0 andu1 in order to arrive at a dynamical
system with optimal ergodic and mixing properties.

We will exclude the case where|l0 − l1| > 1 in order to avoid periodic behaviour.
Suppose indeed thatl0 < m < l1 with m ∈ Z and thatl0 is even (and hencel1 odd). Using

u∗0ψ
k =

{
ψ(−l0+k)/2 if k even

0 if k odd
u∗1ψ

k =
{
ψ(−l1+k)/2 if k odd

0 if k even

one easily sees that2∗(|ψm〉〈ψm|) = |ψr〉〈ψr | with l0 < r < l1 and r 6= m. This means
that subsequent applications of2∗ will transform |ψm〉〈ψm| into itself via at least one
intermediate|ψr〉〈ψr | (l0 < r < l1) and that we obtain a periodic behaviour. From now on
we restrict our attention tol1 = l0+ 1.

Let us introduce the two projection operators

P− =
∑

k6−l0−1

|ψk〉〈ψk| P+ =
∑
k>−l0
|ψk〉〈ψk|

such thatP− + P+ = 1l. It takes a straightforward calculation to see thatu∗εψ
k ∈ P±H as

soon asψk ∈ P±H (ε = 0, 1), meaning thatP±2(A)P± = 2(A) as soon asP±AP± = A.
This allows us to consider only the subalgebraA of those operators for whichP+AP+ = A,
or equivalentlyB(P+H). The benefit of this will be the existence now of a unique
invariant normal state|ψ−l0〉〈ψ−l0| (see theorem 1), whereas there are two invariant states
|ψ−l0〉〈ψ−l0| and |ψ−l0−1〉〈ψ−l0−1| on B(H).

From now on we choosel0 = 0 and hencel1 = 1. This particular choice is quite
convenient as it agrees well with the binary expansion of a natural number (see lemma 3).
All subsequent results will be independent of the value ofl0. We have now arrived at
the following model: consider iǹ2(N) the canonical orthonormal basis{ψ0, ψ1, . . . , } of
sequencesψj = (δjn)n∈N and the isometriesu0 andu1 defined by

u∗0ψ
2k = ψk u∗0ψ

2k+1 = 0 u∗1ψ
2k = 0 u∗1ψ

2k+1 = ψk

for k ∈ N. The single step time evolution onA = B(`2(N)) is given by

A 7→ u0Au
∗
0 + u1Au

∗
1.

Lemma 3. Introducing the notationB(εn−1, . . . , ε0) =
∑n−1

i=0 εi2
i we have

u∗εn−1
. . . u∗ε0

ψp+k2n =
{
ψk if p = B(εn−1, . . . , ε0)

0 otherwise

with εn−1, . . . , ε0 ∈ {0, 1}, 06 p 6 2n − 1 andk ∈ N.
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Proof. We prove this by induction onn. The statement holds forn = 1. The induction
stepn→ n+ 1 can be seen as follows. We have to compute

u∗εnu
∗
εn−1

. . . u∗ε0
ψp+k2n+1

with 0 6 p 6 2n+1 − 1 andk ∈ N. Therefore, we writep = p′ + k′2n (0 6 p′ 6 2n − 1).
k′ must be either 0 or 1 and

u∗εnu
∗
εn−1

. . . u∗ε0
ψp+k2n+1 = u∗εn (u∗εn−1

. . . u∗ε0
ψp′+k′2n+k2n+1

)

= u∗εn (u∗εn−1
. . . u∗ε0

ψp′+(k′+2k)2n )

=
{
u∗εnψ

k′+2k if B(εn−1, . . . , ε0) = p′

0 otherwise

=
{
ψk if k′ = εn andB(εn−1, . . . , ε0) = p′
0 otherwise.

The condition on the last but one line is equivalent toB(εn, εn−1, . . . , ε0) = p, which
completes the proof. �

The next result shows that any state onA given by a density matrix relaxes to the
unique invariant vector state determined byψ0.

Theorem 1. For any normal stateωρ onA given byωρ(·) = Tr(ρ·) we have

lim
n→∞‖(2∗)

n(ρ)− |ψ0〉〈ψ0|‖1 = 0.

Proof. It is sufficient to prove that

lim
n→∞‖(2∗)

n(|ϕ〉〈ϕ|)− |ψ0〉〈ψ0|‖1 = 0

for any normalized vectorϕ =∑k>0 ϕkψ
k with ϕk ∈ C.

The time evolved vector state can be written as

(2∗)n(|ϕ〉〈ϕ|) =
∑

εn−1...ε0

|u∗εn−1
. . . u∗ε0

ϕ〉〈u∗εn−1
. . . u∗ε0

ϕ|

=
2n−1∑
p=0

∣∣∣∣ 2n−1∑
p′=0

∑
k>0

ϕp′+k2nu
∗
(p)ψ

p′+k2n
〉〈 2n−1∑

p′=0

∑
k>0

ϕp′+k2nu
∗
(p)ψ

p′+k2n
∣∣∣∣

where we replace the summation over theε’s by the summation over their decimal
expansion. We now use the previous lemma to write

(2∗)n(|ϕ〉〈ϕ|) =
2n−1∑
p=0

∣∣∣∣∑
k>0

ϕp+k2nψ
k

〉〈∑
k>0

ϕp+k2nψ
k

∣∣∣∣
=

2n−1∑
p=0

|ϕpψ0〉〈ϕpψ0| +
2n−1∑
p=0

|ϕpψ0〉
〈∑
k>0

ϕp+k2nψ
k

∣∣∣∣
+

2n−1∑
p=0

∣∣∣∣∑
k>0

ϕp+k2nψ
k

〉
〈ϕpψ0|

+
2n−1∑
p=0

∣∣∣∣∑
k>0

ϕp+k2nψ
k

〉〈∑
k>0

ϕp+k2nψ
k

∣∣∣∣.
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It is clear that the first term will converge to|ψ0〉〈ψ0| in the trace norm. The trace norm
of the remaining terms will vanish asn tends to infinity. We show this for the second term.
The other terms can be treated in a similar way∥∥∥∥ 2n−1∑
p=0

|ϕpψ0〉
〈∑
k>0

ϕp+k2nψ
k

∣∣∣∣∥∥∥∥
1

6
2n−1∑
p=0

∥∥∥∥|ϕpψ0〉
〈∑
k>0

ϕp+k2nψ
k

∣∣∣∣∥∥∥∥
1

6
2n−1∑
p=0

|ϕp|
(∑
k>0

|ϕp+k2n |2
)1

2

6
( 2n−1∑
p=0

|ϕp|2
)1

2
( 2n−1∑
p=0

∑
k>0

|ϕp+k2n |2
)1

2

.

The first factor will converge to‖ϕ‖2 = 1 while the second factor equals(∑
k>2n
|ϕk|2

) 1
2

which converges to zero. �

Theorem 2. The spectrum of2 with respect to the algebraA consists of the closed unit
disc.

Proof. Let µ be any complex number in the open unit disc. We show that there exists a
trace class operatorρµ such that2∗(ρµ) = µρµ. We propose

ρµ =
∑
i>0

λi |ψi〉〈ψi |

with λi ∈ C. If ρµ is to be an eigenvector of2∗, theλi have to satisfy

µλi = λ2i + λ2i+1. (6)

This requirement is fulfilled by the following choice ofλi : setλ0 = 1 and fork > 0 set

λ2k = λ2k+1 = · · · = λ2k+1−1 =
µk(µ− 1)

2k
.

This makesρµ into a trace class operator∑
i>0

|λi | = 1+
∑
k>0

2k−1∑
m=0

|λ2k+m|

= 1+ |µ− 1|
∑
k>0

2k−1∑
m=0

|µ|k
2k

= 1+ |µ− 1|
∑
k>0

|µ|k

and this infinite sum is converging since|µ| < 1. Furthermore, it is clear thatµλ0 = λ0+λ1

and by writingi > 1 asi = 2k + m with k > 0 and 06 m 6 2k − 1 one easily sees that
condition (6) is met for alli.

As 2 is the adjoint of2∗, its spectrum contains at least the closed unit disc. On the
other hand it is contained in the same disc because2 has norm 1. Therefore the statement
follows. �

Theorem 3. The only eigenvalues of2 are 0 and 1. Up to scalar multiples, the only
eigenvector of2 corresponding the eigenvalue 1 is the unit operator.
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Proof. Letµ be in the spectrum and suppose thatA is a corresponding eigenvector. Choose
integersk, l > 0 and take a positive integer such thatk, l 6 2n − 1. From2n(A) = µnA
we have

µn〈ψk,Aψl〉 = 〈ψk,2n(A)ψl〉

=
2n−1∑
p=0

〈u∗(p)ψk, Au∗(p)ψ
l〉

=
{

0 if k 6= l
〈ψ0, Aψ0〉 if k = l.

If µ 6= 0 andµ 6= 1, we can conclude that〈ψk,Aψl〉 = 0 for all k, l > 0 and soA = 0.
Therefore, only 0 and 1 can be eigenvalues.

For µ = 1 we see that〈ψk,Aψl〉 = 0 if k 6= l and 〈ψk,Aψk〉 = 〈ψ0, Aψ0〉 for all
k > 0 and henceA ∈ C1l.

To end the proof we mention that the eigenvectors corresponding to the eigenvalue 0
are those operators for which〈ψk,Aψl〉 = 0 if k and l have the same parity. �

Lemma 4. The pure stateω0 : A 7→ 〈ψ0, Aψ0〉 is mixing under2, i.e.

lim
n→∞ω0(2

n(A)B) = ω0(A)ω0(B)

for any two operatorsA,B ∈ A.

Proof. For any two operatorsA andB in A, we have

ω0(2
n(A)B) =

2n−1∑
p=0

〈ψ0, u(p)Au
∗
(p)Bψ

0〉

= 〈ψ0, Au∗n0 Bψ
0〉

=
∑
k>0

〈ψ0, Au∗n0 ψ
k〉〈ψk, Bψ0〉

=
∑
k>0

〈ψ0, Aψk〉〈ψ2nk, Bψ0〉

so, separating out the termk = 0, we see

|ω0(2
n(A)B)− ω0(A)ω0(B)| 6

∑
k>1

|〈ψ0, Aψk〉||〈ψ2nk, Bψ0〉|

6
(∑
k>1

|〈ψ0, Aψk〉|2
)1

2
(∑
k>1

|〈ψ2nk, Bψ0〉|2
)1

2

6 ‖A∗ψ0‖
(∑
k>2n
|〈ψk, Bψ0〉|2

)1
2

which tends to zero asn goes to infinity. �

5. Technical lemmas

Lemma 5. An operatorx = α1l+K (α ∈ C,K ∈ Lp) on a Hilbert spaceH can be written
in the formx = U |x| whereU is unitary andU, |x| ∈ C1l+ Lp.
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Proof. Take as a starting point the polar decomposition ofx = Û |x| whereÛ is defined
as

Û |x|ϕ = xϕ
Ûϕ = 0 if ϕ ∈ Ker(|x|) = Ker(x).

An operatorA ∈ B(H) is said to be Fredholm if its range is closed and both Ker(A)

and Ran(A)⊥ are finite-dimensional. For Fredholm operators, the index is defined by
Ind(A) := dim Ker(A)− dim Ran(A)⊥. If A is Fredholm andC is compact, thenA+ C is
Fredholm and Ind(A) = Ind(A+ C) [8].

Because Ind(1l) = 0, we have Ind(x) = 0 and therefore

dim Ker(x) = dim Ran(x)⊥ <∞.
This admits the definition of a finite rank isomorphism

8 : Ker(x)→ Ran(x)⊥

which can be extended toH by putting Ker(8) = Ran(|x|).
If we defineU = Û +8 we can immediately verify thatUU∗ = 1l

UU ∗ = Û Û ∗ +88∗ + Û8∗ +8Û ∗
= PRan(x) + PRan(x)⊥ = 1l

as Û8∗ = 8Û ∗ = 0. Along the same lines

U ∗U = Û∗Û +8∗8+8∗Û + Û∗8
= PRan(x∗) + PKer(x) = 1l

as8∗Û = Û∗8 = 0.
It remains to prove thatU and |x| belong toC1l+ Lp. From

|x|2 = x∗x = |α|21l+ αK∗ + ᾱK +K∗K
we see that(|x|+|α|1l)(|x|−|α|1l) ∈ Lp. Because|x| is positive,|x|+|α|1l is invertible and
this implies that|x| ∈ |α|1l+Lp sinceLp is an ideal. Furthermore,x = U |x| = U(|α|1l+L)
with L ∈ Lp so |α|U ∈ α1l+ Lp or finally U ∈ (α/|α|)1l+ Lp. �

Lemma 6. For any partition of unityX = (x0, . . . , xk−1) ⊂ B(H) in elements of the form

xi = αi1l+Ki αi ∈ C, Ki ∈ Lp
there is a constantC such that we can construct for everyε > 0 a partitionY with
‖xi − yi‖ < ε (i = 0, . . . , k − 1). Furthermore,Y is of the form

yi = βi1l+ K̃i βi ∈ C, K̃i finite rank

with K̃i = PfinK̃iPfin wherePfin is a projection of dimension

N = 2k

[(
C

ε2

)p]
at most.
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Proof. Chooseε > 0 and let 0< γ < 1 be a real number, close to 1, which we will
specify later on and will depend onε. Definek operatorszi = γ xi . For thisk-tuple we see
that ‖xi − zi‖ 6 1− γ and‖∑k−2

i=0 z
∗
i zi‖ 6 γ 2.

The first (k − 1) elements ofY will be defined by cutting off the compact operators,
appearing inzi , to finite rank operators such that

∑k−2
i=0 y

∗
i yi 6 1l. One way to achieve this,

is to require that∥∥∥∥ k−2∑
i=0

z∗i zi −
k−2∑
i=0

y∗i yi

∥∥∥∥ < 1− γ 2.

This requirement can be met by asking thatyi=0,...,k−2 should satisfy

‖zi − yi‖ < 1− γ 2

3(k − 1)

since one then has∥∥∥∥ k−2∑
i=0

z∗i zi −
k−2∑
i=0

y∗i yi

∥∥∥∥ 6 k−2∑
i=0

‖z∗i ‖‖zi − yi‖ + ‖z∗i − y∗i ‖‖yi‖

6
k−2∑
i=0

γ ‖zi − yi‖ + ‖zi − yi‖(‖zi − yi‖ + γ )

6
k−2∑
i=0

2‖zi − yi‖ + ‖zi − yi‖2

6 3(k − 1) max
i=0,...,k−2

‖zi − yi‖.

Let us fix a collectionyi (i = 0, . . . , k − 2) making sure that

1− γ + 1− γ 2

3(k − 1)
< ε.

To constructyk−1, we use lemma 5 to write

xk−1 = U |xk−1|

= U
√√√√1l−

k−2∑
i=0

x∗i xi

whereU = eiθ01l + L (L ∈ Lp) is a unitary operator. Because of the unitarity ofU , the
structure ofL will be

L =
∑
n>1

(eiθn − eiθ0)|ϕn〉〈ϕn|

=
∑
n>1

|eiθn − eiθ0||ξn〉〈ϕn|

which gives us the canonical decomposition ofL provided that we arrange theϕn in such
a way that|exp(iθn)− exp(iθ0)| is a decreasing sequence, converging to 0.

ApproximatingL by a finite rank operator̃L, i.e. restricting the norm convergent sum
to a finite number of terms, we get a new unitaryŨ = exp(iθ0)1l+ L̃. We now put

yk−1 := Ũ
√√√√1l−

k−2∑
i=0

y∗i yi .
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Note thatY is a partition of unity becausẽU∗Ũ = 1l. The norm difference between
zk−1 andyk−1 can be estimated as follows

‖yk−1− zk−1‖ 6
∥∥∥∥Ũ
√√√√1l−

k−2∑
i=0

y∗i yi − U
√√√√γ 21l−

k−2∑
i=0

z∗i zi

∥∥∥∥
6 ‖Ũ‖

∥∥∥∥
√√√√1l−

k−2∑
i=0

y∗i yi −
√√√√γ 21l−

k−2∑
i=0

z∗i zi

∥∥∥∥
+‖Ũ − U‖

∥∥∥∥
√√√√γ 21l−

k−2∑
i=0

z∗i zi

∥∥∥∥.
Using lemma 9 and applying the triangle inequality we get

‖yk−1− zk−1‖ 6
√

6

∥∥∥∥(1− γ 2)1l+
k−2∑
i=0

(z∗i zi − y∗i yi)
∥∥∥∥1/2

+ ‖Ũ − U‖

6
√

12
√

1− γ 2+ ‖Ũ − U‖.
If we now determineŨ in such a way that‖Ũ − U‖ < (1− γ 2)1/2 and if we put√

1− γ 2 = ε

6

then‖xi − yi‖ < ε (i = 0, . . . , k − 1) since fori = 0, . . . , k − 2

‖xi − yi‖ 6 ‖xi − zi‖ + ‖zi − yi‖ < (1− γ )+ 1− γ 2

3(k − 1)

< (1− γ 2)+ (1− γ 2) < 2
√

1− γ 2 = ε

3
< ε

and also

‖xk−1− yk−1‖ 6 ‖xk−1− zk−1‖ + ‖zk−1− yk−1‖ 6 (1− γ )+
√

12
√

1− γ 2+
√

1− γ 2

<
√

1− γ 2+
√

12
√

1− γ 2+
√

1− γ 2 < 6
√

1− γ 2 < ε.

The question remains about the number of dimensions on which theK̃i , appearing in
yi , live. Theyi for i = 0, . . . , k − 2 were defined by demanding that the norm difference
between the compact operator inzi (which is in Lp) and the finite rank inyi be smaller
than

1− γ 2

3(k − 1)
= ε2

108(k − 1)

meaning that we can choosẽKi (i = 0, . . . , k − 2) to be of rank[(
108(k − 1)Cp

ε2

)p]
whereCp = max{‖K0‖p, . . . , ‖Kk−2‖p, ‖L‖p}. From this we can conclude that there is a
finite-dimensional subspaceM ⊂ H of dimension at most

2(k − 1)

[(
108(k − 1)Cp

ε2

)p]



6002 J Andries et al

such thatyi = PMyiPM+βiPM⊥ (i = 0, . . . , k−2) and|yk−1| = PM |yk−1|PM+|βk−1|PM⊥ .
The last aspect to be considered is the rank ofL̃. Since

ε2

108(k − 1)
<
ε2

36
<
ε

6

we can give a rough estimate that there exists a finite-dimensional subspacePfinH of at
most dimension

2k

[(
108(k − 1)Cp

ε2

)p]
such thatK̃i = PfinK̃iPfin. The proof is finished by puttingC = 108(k − 1)Cp. �

6. Dynamical entropy

Lemma 7. For any partition of unityX = (x0, . . . , xk−1) in A of the form

xi = αi1l+Ki (αi ∈ C,Ki ∈ Lp)
we have:

h(2,ω0)[X ] 6 log 2.

Proof. Chooseε > 0 and consider the decreasing sequenceεα := ε/(α + 1)2. By taking
ε sufficiently small we can make

2k
∑
α>0

εα

arbitrarily small. Using lemma 6 we can find a sequence of partitionsŶ (α) =
(ŷ
(α)

0 , . . . , ŷ
(α)

k−1) and a sequence of projectionŝPα (α > 0) satisfying

‖xi − ŷ(α)i ‖ < εα (i = 0, . . . , k − 1)

ŷ
(α)
i = P̂αŷ(α)i P̂α + βiP̂⊥α (i = 0, . . . , k − 1)

dim(P̂α(H)) = N̂α = 2k

[(
C(α + 1)4

ε2

)p]
.

We now consider the sequenceX (α) = 2α(X ) andY (α) = 2α(Ŷ (α)). Since2 is not
norm increasing

‖x(α)i − y(α)i ‖ < εα (i = 0, . . . , k − 1)

still holds. Furthermore, because

2(|ξ〉〈χ |) = |u0ξ〉〈u0χ | + |u1ξ〉〈u1χ |
there exists a sequence of projectionsPα such that

y
(α)
i = Pαy(α)i Pα + βiP⊥α (i = 0, . . . , k − 1)

dim(Pα(H)) = Nα = 2α+1k

[(
C(α + 1)4

ε2

)p]
.

From this we can conclude that the density matrixρ[Y (n−1) ◦ · · · ◦Y (0)] will be living on a
subspace of dimension bounded by

1+
n−1∑
α=0

Nα 6 1+ k 2n
(
C

ε2

)p n−1∑
α=0

α4p 6 1+ k 2n
(
C

ε2

)p
n4p+1
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and hence

lim
n→∞

1

n
H(ω0)[Y (n−1) ◦ · · · ◦ Y (0)] 6 lim

n→∞
1

n
log

(
1+ k 2n

(
C

ε2

)p
n4p+1

)
6 log 2.

Since we can make the right-hand side of the estimate of lemma 1 arbitrarily small, this
finishes the proof. �

Lemma 8. X 7→ h(2,ω0)[X ] reaches its upper bound log 2 on the partitionX = (x0, x1)

given by

xk = 1√
2
(1l+ (i − 1)|ξk〉〈ξk|)

ξk = 1√
2
(ψ0+ (−1)kψ1) k = 0, 1.

Proof. The lemma follows from the fact that the stateωX onM⊗N2 is the normalized trace,
i.e.

ωX (A
m−1⊗ · · · ⊗ A0) = 〈ψ0,EAm−1 ◦ · · · ◦ EA0(1l)ψ0〉

= tr (Am−1⊗ · · · ⊗ A0).

In order to prove this, we introduce the notationB ≡ C(B,C ∈ B(H)) iff B − C is
a linear combination of rank one operators of the form|ψk〉〈ψl| (k, l > 0) with k or l
different from 0. In that caseω0(B) = ω0(C), whereω0 is the vector state defined byψ0.
So it is sufficient to prove that

(EAm−1 ◦ · · · ◦ EA0)(1l) ≡
(

tr(Am−1⊗ · · · ⊗ A0)−
m−1∏
k=0

Ak00+ Ak11+ Ak01+ Ak10

2

)
|ψ0〉〈ψ0|

+
( m−1∏
k=0

(Ak00+ Ak11+ Ak01+ Ak10)

2

)
1l (7)

sinceω0(1l) = ω0(|ψ0〉〈ψ0|) = 1. This can be done by induction

EA(1l) =
∑
i,j

Aij x
∗
j xi = A00x

∗
0x0+ A11x

∗
1x1+ A01x

∗
1x0+ A10x

∗
0x1

= A00+ A11

2
1l+ A01

2
(1l+ (i − 1)|ξ0〉〈ξ0| + (−i − 1)|ξ1〉〈ξ1|)

+A10

2
(1l+ (i − 1)|ξ1〉〈ξ1| + (−i − 1)|ξ0〉〈ξ0|).

Expanding|ξk〉〈ξk| and collecting the terms containing 1l and|ψ0〉〈ψ0|, yields

EA(1l) ≡
(
A00+ A11+ A01+ A10

2

)
1l−

(
A01+ A10

2

)
|ψ0〉〈ψ0|.

To prove the induction step from(m− 1) to m we need to check two points. The first
one is

EA(|ψ0〉〈ψ0|) ≡
(
A00+ A11

2

)
|ψ0〉〈ψ0|

which can be seen by a calculation similar to that ofEA(1l). The second point to notice is
thatEA(B) ≡ EA(C) as soon asB ≡ C, which reflects the fact thatEA(|ψk〉〈ψl|) (k or l
different from 0) cannot be equal to 1l or|ψ0〉〈ψ0|.
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If we suppose that (7) is true form, we have for(m+ 1):

(EAm ◦ · · · ◦ EA0)(1l) = EAm((EAm−1 ◦ . . . ◦ EA0)(1l))

≡
(

tr(Am−1⊗ · · · ⊗ A0)−
m−1∏
k=0

Ak00+ Ak11+ Ak01+ Ak10

2

)
Am00+ Am11

2
|ψ0〉〈ψ0|

+
( m−1∏
k=0

Ak00+ Ak11+ Ak01+ Ak10

2

)
Am00+ Am11+ Am01+ Am10

2
1l

−
( m−1∏
k=0

Ak00+ Ak11+ Ak01+ Ak10

2

)
Am01+ Am10

2
|ψ0〉〈ψ0|

≡
(

tr(Am ⊗ · · · ⊗ A0)−
m∏
k=0

Ak00+ Ak11+ Ak01+ Ak10

2

)
|ψ0〉〈ψ0|

+
( m∏
k=0

(Ak00+ Ak11+ Ak01+ Ak10)

2

)
1l.

Taking the expectation valueω0 of expression, we obtain the desired result. �

From the last two lemmas we can conclude the following theorem.

Theorem 4. The dynamical entropy of2 with respect to the stateω0 is

h(2,ω0) = log 2

where the supremum in definition (5) of the dynamical entropy is taken overLp partitions
of unity.
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Appendix

Lemma 9. Let 06 A,B 6 1l be two operators on a Hilbert space. Then

‖A1/2− B1/2‖ 6
√

6‖A− B‖1/2.

Proof. Starting from the spectral decomposition

A =
∫ 1

0
λ dEA(λ) B =

∫ 1

0
λ dEB(λ)

we set

As =
∫ γ

0
λ dEA(λ) Al =

∫ 1

γ

λ dEA(λ)

Bs =
∫ γ

0
λ dEB(λ) Bl =

∫ 1

γ

λ dEB(λ)
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with 0< γ < 1. We obtain the following inequalities

‖
√
A−
√
B‖ = ‖

√
Al + As −

√
Bl + Bs‖

6 ‖
√
Al −

√
Bl‖ + ‖

√
As −

√
Bs‖

6 ‖
√
Al −

√
Bl‖ + 2

√
γ .

Using the series expansion
√

1− z = 1−∑k>1 akz
k and applying a telescoping argument

‖
√
Al −

√
Bl‖ = ‖

√
1l− (1l− Al)−

√
1l− (1l− Bl)‖

6
∑
k

ak‖(1l− Al)k − (1l− Bl)k‖

6
∑
k

akk(1− γ )k−1‖Al − Bl‖

6 ‖Al − Bl‖ 1

2
√
γ

6 (‖Al − A‖ + ‖A− B‖ + ‖B − Bl‖) 1

2
√
γ

6 (2γ + ‖A− B‖) 1

2
√
γ

which results in the estimate

‖
√
A−
√
B‖ 6 3

√
γ + ‖A− B‖

2
√
γ

.

Puttingγ = ‖A− B‖/6, which optimizes the previous line, we obtain the result. �
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